

Page 1 of 10

www.texo.al All Rights Reserved

Advanced TypeScript Concepts

o Advanced Types

o Type Guards

o How to use type guards with type of, instance of

o Mapped Types

o Conditional Types

TypeScript Type Guards

Type Guards allow you to narrow down the type of a variable within a conditional

block.

Typeof

Let’s look at the following example:

How it works:

• First, define the alphanumeric type that can hold either a string or a number.

• Next, declare a function that adds two variables a and b with the type of alphanumeric.

• Then, check if both types of arguments are numbers using the typeof operator. If yes,

then calculate the sum of arguments using the + operator.

http://www.texo.al/

Page 2 of 10

www.texo.al All Rights Reserved

• After that, check if both types of arguments are strings using the typeof operator. If yes,

then concatenate two arguments.

• Finally, throw an error if arguments are neither numbers nor strings.

In this example, TypeScript knows the usage of the typeof operator in the conditional blocks.

Inside the following if block, TypeScript realizes that a and b are numbers.

Similarly, in the following if block, TypeScript treats a and b as strings, therefore, you can

concatenate them into one:

http://www.texo.al/

Page 3 of 10

www.texo.al All Rights Reserved

instanceof

Like the typeof operator, TypeScript is also aware of the usage of the instanceof

operator. For example:

How it works:

First, declare the Customer and Supplier classes.

Second, create a type alias BusinessPartner which is a union type of Customer and Supplier.

Third, declare a function signContract() that accepts a parameter with the type BusinessPartner.

Finally, check if the partner is an instance of Customer or Supplier, and then provide the

respective logic.

Inside the following if block, TypeScript knows that the partner is an instance of the Customer

type due to the instanceof operator:

http://www.texo.al/

Page 4 of 10

www.texo.al All Rights Reserved

Likewise, TypeScript knows that the partner is an instance of Supplier inside the following if

block:

When an if narrows out one type, TypeScript knows that within the else it is not that

type but the other. For example:

Mapped Types

Mapped types are a feature in TypeScript which allow you to map over a union of types to

create a new type.

The syntax looks like this:

http://www.texo.al/

Page 5 of 10

www.texo.al All Rights Reserved

Let's break down each piece of syntax we're seeing here. The F in Fruit acts as a kind of index

signature, which allows us to loop over each member of the Fruit union. You can think of this as

being similar to a JavaScript for...of loop:

In both cases, we get a very important thing: a closure over the current thing we're iterating

over. In the JavaScript example, we get the current item. In the TypeScript example, we get the

current member of the union.

This ability to cleanly map over each member of a union in a simple for...of model is what

makes mapped types so powerful.

With keyof

Using the keyof operator with mapped types gives you a smooth API to create object types

from other object types.

http://www.texo.al/

Page 6 of 10

www.texo.al All Rights Reserved

Here, we gain access to P, which represents either name the first time this is iterated over, then

age the second time. This means we can gain access to the type of each property's value in

Person by using Person[P].

We can then use this to create a new type that has the same keys and values as Person but with

each property being nullable.

Conditional types in TypeScript

Conditional types let us deterministically define type transformations depending on a condition.

In brief, they are a ternary conditional operator applied at the type level rather than at the

value level.

Conditional types are defined as follows:

Conditional types can be recursive; that is, one, or both, of the branches can themselves be a

conditional type:

Constraints on conditional types

One of the main advantages of conditional types is their ability to narrow down the possible

actual types of a generic type.

For instance, let’s assume we want to define ExtractIdType<T>, to extract, from a generic T, the

type of a property named id. In this case, the actual generic type T must have a property named

id. At first, we might come up with something like the following snippet of code:

http://www.texo.al/

Page 7 of 10

www.texo.al All Rights Reserved

Here, we made it explicit that T must have a property named id, with type either string or

number. Then, we defined three interfaces: NumericId, StringId, and BooleanId.

If we attempt to extract the type of the id property, TypeScript correctly returns string and

number for StringId and NumericId, respectively. However, it fails for BooleanId: Type

'BooleanId' does not satisfy the constraint '{ id: string | number; }'. Types of property 'id' are

incompatible. Type 'boolean' is not assignable to type 'string | number'.

Still, how can we enhance our ExtractIdType to accept any type T and then resort to something

like never if T did not define the required id property? We can do that using conditional types:

http://www.texo.al/

Page 8 of 10

www.texo.al All Rights Reserved

By simply moving the constraint in the conditional type, we were able to make the definition of

BooleanIdType work. In this second version, TypeScript knows that if the first branch is true,

then T will have a property named id with type string | number.

Type inference in conditional types

It is so common to use conditional types to apply constraints and extract properties’ types that

we can use a sugared syntax for that. For instance, we could rewrite our definition of

ExtractIdType as follows:

In this case, we refined the ExtractIdType type. Instead of forcing the type of the id property to

be of type string | number, we’ve introduced a new type U using the infer keyword. Hence,

BooleanIdType won’t evaluate to never anymore. In fact, TypeScript will extract boolean as

expected.

http://www.texo.al/

Page 9 of 10

www.texo.al All Rights Reserved

infer provides us with a way to introduce a new generic type, instead of specifying how to

retrieve the element type from the true branch.

Distributive conditional types

In TypeScript, conditional types are distributive over union types. In other words, when

evaluated against a union type, the conditional type applies to all the members of the union.

Let’s see an example:

In the example above, we simply defined a conditional type named ToStringArray, evaluating to

string[] if and only if its generic parameter is string. Otherwise, it evaluates to never.

Let’s now see how TypeScript evaluates ToStringArray<string | number> to define StringArray.

First, ToStringArray distributes over the union:

Then, we can replace ToStringArray with its definition:

Evaluating the conditionals leaves us with the following definition:

Since never is a subtype of any type, we can remove it from the union:

http://www.texo.al/

Page 10 of 10

www.texo.al All Rights Reserved

Most of the times the distributive property of conditional types is desired. Nonetheless, to

avoid it we can just enclose each side of the extends keyword with square brackets:

In this case, when evaluating StringArray, the definition of ToStringArray does not distribute

anymore:

type StringArray = ((string | number) extends string ? (string |

number)[] : never)

Hence, since string | number does not extend, string, StringArray will become never.

For exercises, check in class.

http://www.texo.al/

